skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pu, Lingjun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. Operating distributed cloudlets at optimal cost is nontrivial when facing not only the dynamic and unpredictable resource prices and user requests, but also the low efficiency of today's immature cloudlet infrastructures. We propose to control cloudlet networks at multiple granularities - fine-grained control of servers inside cloudlets and coarse-grained control of cloudlets themselves. We model this problem as a mixed-integer nonlinear program with the switching cost over time. To solve this problem online, we firstly linearize, "regularize", and decouple it into a series of one-shot subproblems that we solve at each corresponding time slot, and afterwards we design an iterative, dependent rounding framework using our proposed randomized pairwise rounding algorithm to convert the fractional control decisions into the integral ones at each time slot. Via rigorous theoretical analysis, we exhibit our approach's performance guarantee in terms of the competitive ratio and the multiplicative integrality gap towards the offline optimal integral decisions. Extensive evaluations with real-world data confirm the empirical superiority of our approach over the single granularity server control and the state-of-the-art algorithms. 
    more » « less